Angle Pairs \& Proofs

$\overline{E H}$ and $\overline{H K}$ represent two perpendicular mirrors. $\overrightarrow{D F}$ and $\overrightarrow{C G}$ show two parallel light rays that reflect off the mirrors so that $\overrightarrow{D F}\|\overrightarrow{C G}\| \overrightarrow{I B} \| \overrightarrow{J A}$ and $\overrightarrow{F J} \| \overrightarrow{G I}$. When light reflects, the angle of reflection is congruent to the angle at which the light strikes the surface. For example, $\angle E F D \cong \angle G F M$.

1. What postulate, property, or theorem tells us that $E F+F G=E G$?
2. Name a postulate and a property that together justify saying that if $m \angle E F D=m \angle G F M$, then $m \angle E F M=m \angle G F D$.
3. Write the Linear-Pair Postulate using $\angle F M C$.
4. We know that $\overrightarrow{C M} \| \overleftrightarrow{B L}$, but how do we know that there is not some other line parallel to $\overrightarrow{B L}$ that goes through point M ?
5. What postulate would allow us to construct a line through A and G and know that there are no other possible lines that pass through these two points?
6. What postulate, property, or theorem tells us that $\angle F M C \cong \angle L J A$?
7. (a) If $m \angle C M L=145^{\circ}$, what is $m \angle A J M$? (b) What theorem allowed you to figure that out?
8. If $m \angle M L B=32^{\circ}$, what is $m \angle G I H$?
9. If $m \angle C M L=8 x-5$ and $m \angle I L M=6 x+32$, what is $m \angle L J A$?
10. Two parallel lines are intersected by a transversal. A pair of same-side-interior angles measure $18 x-2 y^{\circ}$ and $2 x+6 y^{\circ}$. A pair of alternate-exterior angles measure $9 y+1^{\circ}$ and $5 x+6^{\circ}$. Find the values of x and y.
11. Two parallel lines are intersected by a transversal. A pair of corresponding angles measure $x^{2}-2 x-6^{\circ}$ and $8 x+18^{\circ}$. What are the measures of the angles in degrees?

Given: Lines are parallel as shown.
Prove: $m \angle 1=m \angle 5$
Directions: Fill in the reasons to justify each of the statements

Statement	Reason
Lines are parallel as shown.	given
$m \angle 1+m \angle 2=180^{\circ}$	12.
$(C \angle L \angle 2=m \angle 3$ and $m \angle 3=m \angle 4$	13.
$m \angle 2=m \angle 4$	14.
$m \angle 1+m \angle 4=180^{\circ}$	15.
$m \angle 5+m \angle 4=180^{\circ}$	16.
$m \angle 1+m \angle 4=m \angle 5+m \angle 4$	17.
$\therefore \quad m \angle 1=m \angle 5$	18.

Angle Pairs \& Proofs 1

Progress Check

1. If $\angle I C D \cong \angle H D E$, what postulate allows us to say that $\overline{I C} \| \overline{H D}$?
2. If $A B=C D$, what property tells us that $A B+B C=B C+C D$?
3. What postulate allows us to conclude in the previous problem that $A C=B D$?
4. What postulate allows us to write $m \angle H D G+m \angle G D E=\angle H D E$?
5. If $m \angle H D E=m \angle I C D$ and $m \angle G D E=m \angle H C D$, why does $m \angle H D E-m \angle G D E=m \angle \hat{I C D}-m \angle H C D$?
6. If $\overrightarrow{F E} \perp \overleftrightarrow{A E}$, how can we be sure that there is not some other line through F that is perpendicular to $\overrightarrow{A E}$?
7. If $3(A B+A C)=72$, what property allows us to write $A B+B C=24$?
8. Write the Linear-Pair Postulate using $\angle H D C$.
9. How do you know that $\overline{H D} \cong \overline{H D}$?
10. If $m \angle A I B+m \angle B I C+m \angle C I H=115^{\circ}$ and $m \angle D G E=\angle B I C$, how do we know that $m \angle A I B+m \angle D G E+m \angle C I H=115^{\circ}$?
